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Project overview

• Collaboration between UCSC / IBM Almaden
• UCSC: Scott Brandt, Carlos Maltzahn

• IBM: Richard Golding, Theodore Wong

• 3 years / $1,000,000

• Goal: Improve end-to-end performance 
management in large clustered storage
• From client, through server, to disk

• Manage performance

• Isolate traffic

• Provide high performance



Stages in the I/O path

1. Disk traffic

2. Management of server cache

3. Flow control across network

• within one client’s session; between clients

4. Management of client cache
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System architecture
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• Specify workload:  throughput, 

read/write ratio, burstiness, etc.

• Broker does admission control
• Requirements are translated to 

utilization
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Fahrrad: Efficient QoS-aware Disk Scheduling

• Control of application resource reservation 
and usage at the disk level

• Goals: 
• Mixed hard, soft, and non-real-time workloads

• Arbitrary granularity of reservations

• Complete isolation of workloads

• Excellent I/O performance



Key observation
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• Scheduling consists of two 
distinct questions

Resource allocation: How 
much resources to allocate to 
each process	

Dispatching: When to give 
each process the resources it 
has been allocated

• Most schedulers integrate 
their management

• Separating them is powerful!



RBED RAD-based CPU scheduler
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Utilization-based disk reservations

• Throughput reservations 
• Assume worst-case behavior

• Allows reservation of a tiny fraction of actual 
throughput

• Utilization reservations
• Easy to make, account for, and guarantee

• Embed application workload information

• Avoid the need for worst-case assumptions 

• Workload knowledge + utilization reservation 
+ isolation = throughput guarantee



Applying RAD to disk I/O

• Reservations based on disk time utilization
• Rate = utilization

• Deadlines = times at which actual utilization must 
equal reserved utilization (= latency bound)

• Need to be able to reorder requests for 
performance
• All requests that can be handled without 

jeopardizing deadlines are put into a reordering 
set

• Cannot ignore “context switches” (seeks)



Fahrrad: RAD-based I/O scheduling

1. Utilization-based reservation, with deadlines
• e.g., 50% of the disk every second, 10% every hour, etc.

2. Requests put into queues

• Each queue has a rate and deadlines

3. Micro-deadlines assigned to requests based on 
target rate and worst-case assumptions

4. Requests released to Disk Scheduling Set (DSS) 
based on micro-deadline

5. Requests scheduled for service from DSS

6. Micro-deadlines updated based on actual service 
times



Fahrrad architecture
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Guaranteeing deadlines
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Release to DSS

BE
20%

Disk
Scheduling
Set

App4App3 Applications

Fahrrad driver

Underlying driver

Session queues

SRT1
20%

SRT2
10%

HRT
50%

App1 App2

500
750
1000
1250
1500

250
100
150
200
250
300

50
250
375
500
625
750

125
250
375
500
625
750

125

WCET = 25 ms
Period of each RT stream = 250 ms

Requests with μ-deadline up to horizon (earliest deadline) move to DSS



Guaranteeing utilization
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A few details

• DSS scheduling
• C-SCAN, SPTF, EDF

• Managing burstiness
• Slots—reserve utilization until request arrives

• Unused slots are allocated to other streams

• Slot swapping—aggregate requests in DSS by swapping slots
• Increases sequentiality of DSS

• Increases isolation and performance

• Isolation—accounting for overheads
• Each stream charged for its seeks

• Each streams charged 2 seeks per deadline



Fahrrad works

Utilization Throughput
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Isolation between request streams

Utilization Throughput

• Utilization and throughput of 4 I/O streams as period of stream 4 
changes (sequential streams w/long queues)

• Rate: 20%

• Deadlines

• Streams 1-3: 2s

• Stream 4: varies from 125 ms to 2 s



HRT and BE (slack goes to BE)

Utilization Throughput

• Utilization and throughput of I/O streams as period of stream 4 changes

• Rate: 20%

• Deadlines

• Sequential SRT streams & random BE stream: 2s

• HRT: varies from 125 ms to 2 s



Performance vs. Linux

Linux Fahrrad
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Disk scheduling conclusions

• Fahrrad provides
• Integrated hard real-time, soft real-time, and best-

effort service

• Arbitrary (nearly) reservation granularity

• Excellent isolation between processes

• Excellent performance



Server cache management

• Server caching isolates disk from application 
behavior
• Buffering smooths workload

• Isolates disk from application period
• Disk deadlines are buffer full times

• Translates between time to space (and back)

• Aside: best-case for disk = worst-cast for cache



Server cache management

• Reads and writes are 
handled differently

• Read cases
1. Cache hit: creates slack

2. Cache miss: sent to disk

3. Prefetch: uses slack to 
increase efficiency

• NV cache⇒writes can be 

delayed indefinitely

• In general: need at least 3 
periods of server cache
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Network management

• Moving data from client cache to server cache

• Network QoS is well-explored
• Currently examining existing solutions

• Cases
1. One client/server route: O(1)

2. One client/server route with arbitrary application 
placement: O(n)

3. Many client/server routes
• w/trunking: polynomial with linear programming: O(n)?

• w/out trunking: NP-complete?



Client cache management

• Holds application data for transfer to server

• Further isolates application from disk
• Further reduces burstiness

• Further addresses independence of periods

• Coordinates with network and server cache



Spinoff: virtual disks

• Virtual disks—complete isolation of disk 
functionality
• Capacity isolation

• Temporal isolation

• Performance isolation 

• LUNs provide capacity isolation

• Fahrrad provides temporal and performance 
isolation



Conclusions

• Excellent progress (< 1 year along)

• Disk scheduling: Fahrrad

• Server cache: In progress

• Networking: Preliminary investigation

• Client cache: TBD

• Lots of industry interest: IBM, NetApp, VMware, 
SAP, NICTA/OK Labs, ...

• Pursuing DARPA follow-on building on end-to-
end QoS


